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FORECASTING WATER DEMAND USING BACK
PROPAGATION NETWORKS IN THE OPERATION OF
RESERVOIRS IN THE CITARUM CASCADE,
WEST JAVA, INDONESIA

Mulya R. Mashudi

The Office of Deputy Minister of State for Research and Technology in
Utilisation and Socialisation of Science and Technology, Indonesia

ABSTRACT

This study investigates the use of Neural Networks (NN) as a potential means of more
accurately forecasting water demand in the Citarum River basin cascade. Neural Networks
have the ability to recognise nonlinear patterns when sufficiently trained with historical
data. The study constructs a NN model of the cascade, based on Back Propagation Networks
(BPN). Data representing physical characteristics and meteorological conditions in the
Citarum River basin from 1989 through 1995 were used to train the BPN. Nonlinear
activation functions (sigmoid, tangent, and gaussian functions) and hidden layers in the
BPN were chosen for the study.

1. INTRODUCTION

The Citarum River basin in West Java as shown in Figure 1, Indonesia, has a cascade of
three reservoirs: Saguling Reservoir, Cirata Reservoir, and Juanda Reservoir, linked in
series from upstream to downstream. Cirata and Saguling Reservoirs function primarily
for hydroelectric power production, while Juanda Reservoir is multifunctional, with
functions including flood control, irrigation, recreation, and fishing. Management of the
three reservoirs focuses on control of water discharge at each of the three reservoirs to
meet the various demands placed on the system as a whole. Successful operation depends
on accurate forecasting of water demand, which changes from month to month depending
on changing needs for water for various functions, especially for power generation and
jrrigation. Changes in the forecasted water demand require appropriate changes in the
operational plan. Accurate forecasting of water demand is, therefore, critical to the
successful management of the system. Present forecasting methods do not allow optimal
reservoir management, and the need for beiter forecasting led to this research.

Operation of the reservoirs is established on hydrologic models’. The hydrologic models
are based on the behaviour of surface water hydrology. Surface water hydrology deals
principally with river modeling and basin modeling. River modeling involves equations
that approximate river flow. Basin modeling is based on equations that approximate rainfall-
runoff relationships. A hydrologic model requires a great deal of detailed data (e.g., a
topographical map, river networks and characteristics, soil characteristics, rainfall, and
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runoff data). Often, these data are not available, which causes great difficulty in model
calibratton. Given the reported successes in applications of Artificial Neural Networks
(ANN) in pattern recognition and simulation of unknown relationships, it would appear
that a suitably designed artificial neural network might be able to complete the hydrologic
models or to provide an alternative methodology. Users of ANN have recently found
many applications in civil engineering such as detecting damage in structures, simulating
structural behaviour, determining truck attributes, estimating construction costs, predicting
river flow, forecasting floods, and estimating rainfall and surface water supply?.

In the hydrological context, as in many other fields, ANN is increasingly used as black-
box, simplified models®. For hydrological applications, the advantage of (ANN) models
is their capability to reproduce unknown relationships existing between a set of input
variables descriptive of the system and a set of output variables®.

The objective of this research is to use ANN methodology to forecast the total demand on
a series of reservoirs in the Citarum River basin areca in West Java Province, Indonesia.
Linear programming, non-linear programming, dynamic programming and multiple
regression have previously been used for this operation and have not given satisfactory
results®. Total demand is an input parameter in the operation. The lack of data available
for this input parameter is the prime reason for using an ANN methodology in order to
estimate the water demand.
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Figure 1: Citarum-reservoirs system.

Source: Nedeco, Indec & Accos. Lmt., PT Virama Karya, and PT Gamma Epsilon. Jariluhur Water Resources
Management Project Preparation Study (/WRMP)-Feasibility Study Main Report Draft. Republic of Indonesia:
Ministry of Public Works Directorate General of Water Resources Development, March 1998.
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2.  RESERVOIRS PROBLEM

The three reservoirs are operated simultaneously in a series using non-linear programming
as a methodology for their model operation. The operation uses water demand prediction
and water supply forecast. The water supply forecast is placed in the operation as an input
parameter. However, water demand always changes from month to month. This requires
the operation authority to update the water supply forecast every month, which causes
inefficiency in the operation of the reservoir.

Changes in the input parameters can keep the methodology from wotking, as the operation
authority would like it to. Data unavailability in the field for estimating water demand
forces the operation to use inaccurate input data. The largest portion of the water supply
(80%) is consumed by irrigation demand. Therefore, it is very important to create a model
which can effectively forecast water demand and supply. The data needed in order to
estimate water demand is mostly unavailable. Therefore, in forecasting the water supply
for irrigation demand, Perusahaan Umum Otorita Jatiluhur (POJ), as the operation authority,
depends on the demand reports from the kabupaten (counties) which contain the irrigation
area under POJ authority. However, these are not always accurate. Actual water demands
are always different from reporied water demands. The irrigation waters cover 243,000 ha
of rice fields and are supplied free of charge by the POJ. Since irrigation water is free of
charge, water stored in the Juanda Reservoir has little commercial value. The water that
does have commercial value, because it is used for electricity, drinking and industry, mostly
pays for operational costs and only creates a small net revenue. Due to the conditions
above, some consequences of the problem are as follows:

(i)  Water supply needs must be modified every month in order to produce an accurate
water demand estimate;

(ii)  Although the existing operation’s objective is to support the water supply plan, the
actual water demand always varies from the plan;

(iif) Optimum electricity production cannot be obtained, since water demand always
changes; and

(iv) Monthly changes create inefficiency in the operation process.

This research is intended to provide an alternative methodology for forecasting the
water demand.

3. NEURAL NETWORKS

Neural Networks, a new information processing technique, are computer simulations of living
nervous systems. The concept of neural networks comes from the biological neural nets in the
human brain, which consists of around 10! electrically active cells called neurons’,

A neuron is a nerve cell with all of its processes. There are three parts of a typical nerve
cell in a simple neuron. Dendrites carry signals in (input). The cell body contains the
nucleus (black-box). The axon which carries signals away (output).
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The summation of the inputs creates a function. This function is called the summation
function or activation function. The output from the summation function does not give a
final output. Instead, this output will be fransformed to reach a final output. The summation
function can be formed as follows:

V; = 2 AW, M

A function, which will transform the summation function into a final output, is called the
transfer function or threshold!. The transfer function can be linear or non-linear; however,
it is generally non-linear. Basically, the output from the summation function may or may
not {rigger the neuron to give an output. The final output depends on how the output from
the summation function is transformed by the transfer function. Therefore, a transfer
function represents a relationship between the summation function and the final output.
There are many transformation functions and the selection of a transformation function
impacts the efficiency of the network. Many types of activation function are in use; however,
the sigmoid, hyperbolic tangent, and gaussian functions used in the research.

The ANN model which was used has the ability to compare results with the expected
output. The comparison provides difference values which can be used for error correction
in the ANN model. The ANN is then run again using the error correction value. This
simulation is run until the differences between the expected result and the ANN output
reach a minimum error. When the ANN reaches the minimum error, the ANN model is
ready to be implemented.

The network paradigm for this research, the Back Propagation Network (BPN) as shown
in Figure 2, is an error-correction process which takes place after the forward-propagation
step is completed; the calculation begins at the output layer and progresses backward
through the hidden layer to the input layer®.

Hidden Layer

Back Propagation
Network

Difference Output and Teacher
Signal

5

Teacher Signal

Figure 2: Structure of back propagation networks.
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The functions used in processing elements in BPN are the non-linear functions, which are
fitted with the characteristics of input and output data. BPN is also fitted with a supervised
learning system in ANN. This study required a supervised learning system, in order to
have sufficiently accurate results with ANN,

Some successful studies and research on forecasting in the water resources area have been
conducted. In 1992, French ef al. developed a three-layer feedforward neural network to
forecast rainfall intensity in space and time and compared the results with two other methods
of short-term forecasting’. Karunanithi et al. in 1994 used neural networks for flow
predictions®, At the same time, Zhu et al. used neural networks to predict runoff’. Zhang
et al used neural networks to forecast daily water demands'®. Deo et al. in 1997 used
neural networks to forecast the real time of ocean wave heights''. In 1999, Liong et al.
conducted river stage forecasting in Bangladesh, also using a neural networks approach'?.
Most of the research above were using Back Propagation Networks with sigmoid function.

4. DATA ORGANISATION

The data collection was conducted in West Java Province, Indonesia in the institutions
which are involved in the operation of the Citarum cascade, and the local university,
The Institute of Technology of Bandung (ITB), which has been conducting research in the
area for years. The institutions are the Jatiluhur Authority Project (POJ), The Institution of
Research in Water Resources of Public Works Department, South Australia Waters
Corporation, Institution of Meteorology and Geophysics of West Java Province (BMG),
and the Institution of Cooperation of Water Resources Development of West Java Province.

Since the research was a comparative study between an existing methodology and the
artificial neural networks methodology, the data collection range was the same as that of
the existing methodology when research was conducted for it.

Data collection requires the same range of data in each input. In order to have all data in
the same range, the range is the data hydrology from 1989 to 1995. The training input data
that were used are as follows:

(i)  Local inflows in Saguling Reservoir (m*/Second)
(ii)  Evaporation in Saguling Reservoir (mm)

(i1l) Water level in Saguling Reservoir (m)

(iv) Local inflows in Cirata Reservoir (m*/Second)
(v)  Evaporation in Cirata Reservoir (mm)

(vi) Water level in Cirata Reservoir (m)

(vii) Local inflows in Juanda Reservoir (m*/Second)
(viii) Evaporation in Juanda Reservoir (mm)

(ix) Water level in Juanda Reservoir (m)

(x)  Average rainfall in West Tarum Canal (mm)
(xi) Average rainfall in North Tarum Canal (mm)
(xii) Average rainfall in East Tarum Canal (mm).
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The Actual Total Demands on the Juanda Reservoir (m%/Second) was used as desired
output. Data in the Planned Total Demands on the Juanda Reservoir (m*Second) was
used for a comparative study

The data for this research is from years 1989 through 1995. The Juanda, Saguling, and
Cirata Reservoirs started their series operation in 1989. The data on the Tarum Canal
areas were available from 1920 through the present time, but the data conditions from
1996 through 1998 were missing and unavailable. Collecting the missing Tarum Canal
data was not feasible. The consideration of collecting data was to have all input data in the
same range of years. Therefore, the chosen range was taken in order to have all data
available; otherwise, the data could not be used to complete this research.

Normalisation was performed in order to have the data transformed to the neural networks
range. Two transformation types were made in the research; first is the range 0 to +1, and
second, the range -1 to +1.

5. NETWORK TRAINING

Neural networks are used in pattern recognitions and forecasting applications. To do so, the
neural networks studies the behaviour of an application from past data. The study of past
behaviour of a system is called the training process and must take place before a neural
network is capable of simulating the systems’ behaviour under a different set of conditions.

Training in the Back Propagation Networks is a gradient descent system that tries to
minimise the mean square error of the system®. The ability of neural networks to converge
depends on the success of its training. To have successful training, historical data availability
is crucial. The more data available, the better the neural networks’ results, In the experiments
reported here, 80% of the available data (68 patterns) was used for training and 20% (16
patterns) for testing.

In the training phase, over-training of the model may occur'’. In this research, the error on
the training set kept on decreasing during training, while the error on the test set started
increasing at a certain point. To avoid over training in the neural networks training phase,
training was stopped when the minimal test set error was achieved.

6. FORECAST PERFORMANCE EVALUATION

The neural networks performed using different non-linear functions. Campolo et al. used
R squared and Mean Square Error (MSE) to estimate neural network forecasting ability
results in river flood forecasting'®. Liong ef al. also obtained R squared and MSE to
analyse neural networks’ abilities in forecasting river stage in Bangladesh'?. Statistical
analysis using R squared, and MSE was carried out to examine the result of the neural
networks. For comparison to the neural networks results, the R squared and MSE of the
total plan water demand (as current method result) was calculated against the actual output
(actual water demand). R squared is the coefficient of multiple determination. It is a
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statistical indicator usually applied to multiple regression analysis. It compares the accuracy
of the model to the accuracy of a trivial benchmark model, wherein the prediction is just
the mean of all of the samples. A perfect fit would result in an R squared value of 1, a very
good fit near 1, and very poor fit less than 0. The coefficient of multiple determination R
squared is defined as follows:

= 20 %) 2_@“2 = %,) o
PUCSA

where y_is the actual value, y  the predicted value, and ¥, the mean of the y values.

The Mean Square Error is the mean over all patterns of the square of the actual value
minus the predicted value. Good forecasting neural networks results had MSE smaller
than the Total Plan Water Demand. Bad forecasting neural networks results have MSE
larger than or equal to the Total Plan Water Demand. The MSE is defined as follows:

1 a
MSE = ﬁ,;(y“" —¥,0) 3)

where N is total number of patterns, y_, the target desired value for the ith pattern, y, the
predicted output value for the itk pattern. Actual values form past years were used as a
target or desired values for neural network during training.

The Mann-Whitney test was used to determine whether the actual demand (expected
output) and neural networks results or the current method forecasting water demand
plan was significantly different at a selected probability level. Accurate forecasting of
neural networks results did not have significant difference to the expected output. The
Mann-Whitney test sample probability significant level is 5% (o =0.05). In order to
have the representable forecasting results, the probability level of neural networks results
needs to be above test sample probability significance (o). The result of the Mann-
Whitney test was marked as W.

The neural networks training results and the neural networks testing results are compared
to the values in Table 1 to determine the good forecasting results. The neural networks

Table 1: Total plan water demand measurements.

No. Description R Mean Mean Min. Max.
squared | squared | absolute|absolute | absolute [ W]
error error error error 0>0.057

1 Total Plan Water (7410)
Demand, the whole 0.3860 | 811.534 4767 18.460 21.118 0.321
pattern

2 Total Plan Water (283)
Demand, the testing 0.6446 | 640238 | 1i.844 | 20.750 0.940 0.4397
pattern

—_——
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training results were matched against the first description of Table 1. The neural networks
results were matched against the second description of Table 1. The good result of neural
networks had to pass both descriptions in the Table 1,

7.  CONCLUSION

The result of neural networks experiments in this study proves that neural networks give
better forecasting results than the current method. The input values in the nevral networks
were collected based on the river basin characteristics as alternative data. The good result
of neural networks experiments demonstrated the ability of neural networks to perform
well with limited data and alternative data.

There were three non-linear functions (sigmoid, tangent and gaussian functions) used
in these experiments. Table 2 and 3 display the best result of each function in the neural
networks results and testing results. The [W] values in Table 2 and 3 are the Mann-
Whitney two sample t test results at significance Ievel 5%. The requirement to accept
the neural network models were achieved as shown in [W], MSE and R square values
of the Table 2 and 3.

Table 2: Best function neural network result.

No. BPN NN Types R Mean Mean | Min. Max.
squared | squared | absolute|absolute | absolute [ W]
error error error error o>0.057
1 Ward Net with Sigmoid {7096)
Function 0.909 121.687 7.751 0 34.868 0.9962
2 Ward Net with 3 slabs (7133)
and using tangent 0.8566 191.786 10.638 | 0.411 43.709 0.9129
function
3 Standard with Gaussian (7300)
Function and 2 0.9226 103.473 6.596 0.063 33.782 (.5227
hidden layers

Table 3: Best function neural network testing result.

No. BPN NN Types R Mean Mean Min. Max.
squared | squared | absolute|absolute | absolute { W]
error error error error ¢>0.05?
1 Ward Net with Sigmoid (266)
Function 0.7636 425.859 17.665 | 1.006 34.868 0.9546
2 Ward Net with 3 slabs (264)
and using tangent 0.7061 529.471 19,102 | 1.944 43.709 1.0000
function
3 Standard with Gaussian (264)
Function and 2 0.8126 337.623 15.14 1.076 33.782 1.0000

hidden layers




AJSTD Vol. 18 No. 2

Table 2 and 3 show, the Mann-Whitney statistic tests gave no significance difference to
the actual water demand. In accordance with Table 2 and 3, a standard Back Propagation
Network using the gaussian function and 2 hidden layers gave the highest R squared value
and the smallest MSE value in the neural networks result and testing result, followed by
the sigmoid function and the tangent function. As a result, the H, hypothesis was rejected.
The gaussian function outperformed the sigmoid function.

Adding the hidden layer in a neural network can give better convergence of neural networks
results. Table 2 and 3 show that adding a hidden layer in the standard Back Propagation
network using the ganssian function gave a good prediction result. Nevertheless, increasing
the number of hidden layers cannot always give better performance of a neural neiwork.
The standard Back Propagation Network using the tangent function with input range
(0, +1) could not converge to the expected output by adding a hidden layer. Table 4 and 5
show that the R squared and MSE of the standard Back Propagation Network using the
tangent function were decreased as a result of increasing hidden layers from one to two.

Table 4: Result of standard BPN using tangent function.

No. BPN NN Types R Mean Mean Min. Max.
squared | squared absolute absolute absolute
error error error error
1 Standard with Tangent
Function 0.8099 254.287 11.509 02 56.057
2 Standard with Tangent
Function and 2 hidden 0.5525 598.551 18.085 0.06 88.827
layers
Table 5. Testing result of standard BPN using tangent function.
No. BPN NN Types R Mean Mean Min. Max.
squared | squared absolute absolute | absolute
error error error error
i Standard with Tangent
Function 0.6461 637.537 19.45 3.273 56.057
2 Standard with Tangent
Function and 2 hidden 0.4606 971.753 25.596 4712 66.167
layers

Previous results in the water resources field recommend the sigmoid function in Back
Propagation Networks as the most widely used, but the results in this research do not
confirm this. The good architecture of neural networks can be formed by trial and error.
Adding hidden layers and neurons, changing activation functions, or even new neural
networks methods are not guaranteed to give successful results. The best function and
architecture of neural networks based on the experiments conducted was the neural networks
results have the lowest value of MSE and the highest value of R square.
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Appendix I - Comparison Values Between Actual Water Demand, BPN
(Gaussian Function and 2 Hidden Layers), and Total Plan Water Demand

Abbreviations:

Actual (1) = Actual Water Demand.

Network (1) = Standard BPN using Gaussian Function and 2 Hidden Layers.
PlanTotWtrDm = Total Plan Water Demand.

Act-Net (1) = Trror Value between BPN (Gaussian Function and 2 Hidden Layers) to
Actual Water Demand.

Act-Plan = Error Value between Total Plan Water Demand to Actual Water Demand.

Statistics Measurements

Table Statistics Measurements Neural Network Result and Total Plan Water Demand.

No. BPN NN Types R Mean Mean Min. Max.
squared | squared | absolute|absolute | absolute [ W]
error error error error a=0.057

1 Total Plan Water (7410)
Demand 0.3860 811.534 4767 | 18.460 21.118 0.321

2 Standard with Gaussian (7300)
Function and 2 0.9226 103.473 6.596 0.063 33.782 0.5227
hidden layers

Table Statistics Measurements Neural Network Testing Results and Total Plan
Water Demand.

No. BPN NN Types R Mean Mean | Min. Max.
squared | squared | absolute|ahsolute | absolute [ W]
error error error error 0.=0.057
1 Total Plan Water (285)
Demand, the testing 0.6446 640.238 11.844 | 20.750 0.940 0.4397
pattern
2 Standard with Gaussian (264)
Function and 2 0.8126 | 337.623 15.14 1.076 33.782 1.0000
hidden layers, testing
pattern
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