•  
  •  
 

ASEAN Journal on Science and Technology for Development

Abstract

The influence of working temperature for a polysilicon module has been investigated in Brunei Darussalam for a period of two years. The rise in temperature produces thermal agitation which not only increases the dark current but also enhances the losses of free carriers in a polycrystalline module. The efficiency and the output power decreases with an increase in the working temperature. A maximum decline in the output power of 97% has been measured under a dominated diffused radiation environment. The temperature coefficients have been obtained and equations are developed to evaluate the change in the rating of module at any working temperature with reference to their values at STC.

Publication Date

11-21-2017

Included in

Biotechnology Commons

Share

COinS